
1U.S. Government Work not protected by U.S. copyright                          1 

Error Mitigation of Point-to-Point Communication for 
Fault-Tolerant Computing 

Robert L. Akamine, Robert F. Hodson 
NASA Langley Research Center 

Hampton, VA  23681-2199 
(757) 864-5005 

robert.l.akamine@nasa.gov 
robert.f.hodson@nasa.gov 

 

Brock J. LaMeres 
Montana State University 

Bozeman, MT 59717 
(406) 994-5987 

lameres@ece.montana.edu 
 

 

Robert E. Ray 
Jacobs/ESTS 

Marshall Space Flight Center  
(256) 544-0604 

robert.e.ray@nasa.gov

Abstract -- Fault tolerant systems require the ability to 
detect and recover from physical damage caused by the 
hardware’s environment, faulty connectors, and system 
degradation over time.  This ability applies to military, 
space, and industrial computing applications.  The integrity 
of Point-to-Point (P2P) communication, between two 
microcontrollers for example, is an essential part of fault 
tolerant computing systems.  In this paper, different 
methods of fault detection and recovery are presented and 
analyzed. 
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1.  INTRODUCTION 

Detecting and recovering from physical damage or 
‘glitches’ that occur in communication between two points 
is a critical capability for fault tolerance systems.  In 
military applications, mitigation of physical damage of 
wires caused by combat operations is critical to give troops 
the confidence in their offensive and defensive systems.  
Manned space operations face similar dangers.  Recovering 
from ‘glitches’ caused by radiation induced Single Event 
Upsets (SEU) and Single Event Transients (SET) on 
communication wires is essential for space systems.  
Radiation events are mainly caused by ionized radiation 
which deposit charge in memory devices such as flip-flops.  
This charge can trigger state changes.  Considerable 
research, development, and application of Consumer-Off-
The-Shelf (COTS) products, due to the lack of cost-effective 
high performance radiation hard parts, in fault tolerance 
computing systems has produced radiation tolerant 

processor platforms [1][2][3].  However, the integrity of 
data passing between two processing or storage systems 
needs analysis to ensure the fault tolerant ability of an entire 
system. 

Generically speaking, two strategies of error detection and 
recovery exist; masking and non-masking.  Masking 
techniques are defined as detecting, isolating, and correcting 
errors in real time.  Forward Error Correction (FEC) codes, 
such as Hamming codes, are an example of a masking 
method.  In non-masking techniques, error detection occurs 
in real time, but fault isolation and correction occur in 
separate and later processing.  Automatic Repeat Query 
(ARQ) methods that use a command and response algorithm 
to verify proper data communication is a non-masking 
technique.  Overall the different strategies of 
communication integrity can be illustrated in a hierarchical 
tree as shown in Figure 1.  

Two masking techniques are studied further: 

1. Using Hamming codes to detect, isolate, and correct for 
single bit errors in a parallel FEC example. 

2. Implementing a Triple Modular Redundancy (TMR) 
system to detect, isolate, and correct for data errors in a 
parallel example 

Two non-masking techniques are also studied: 

1.  ARQ implementation with simple even-parity to detect 
errors in a discrete example 

2. ARQ implementation using Ethernet as the physical 
communication medium in an asynchronous serial 
technology example 

Each example discusses the theory of operation, and 
analysis.  Analysis presents the advantages and 
disadvantages of each technique as a function of data 
bandwidth, complexity, wire mass, and latency.
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Figure 1 – Error Detection and Correction Techniques 

2. FORWARD ERROR CORRECTION EXAMPLE 

Research and development conducted by Montana State 
University successfully demonstrated a masking, parallel, 
FEC design.  The demonstration used Hamming Codes, a 
block code suitable for a parallel data communication, due 
to its ability to detect single bit errors and maintain channel 
rate efficiency [4]. 

Richard Hamming introduced his FEC in 1950 and the most 
common use of his code is in memory and storage 
electronics.  A Hamming code operates by overlapping  
parity bits for 2 1 data bits.  Each parity bit is the 
exclusive-or (XOR) operation of the data bits where the 
binary AND of the Hamming parity position and the bit 
position is non-zero [4].  For example, a (7,4) Hamming 
code, seven total bits with four data bits, has the data bit 
position and parity position table defined in Table 1. 

Table 1. A (7,4) Hamming Code Table 

 

The overlapped parity property of Hamming codes allow for 
Single Error Correction (SEC).  Double Error Detection 
(DED) can be achieved by adding an additional parity bit 
which is the XOR of the four data bits in a (7,4) Hamming 
code [4].  The resulting Hamming encoding circuit 
combining SEC and DED (SECDED) technologies is shown 
in Figure 2.  

 
Figure 2 - (7,4) SECDED Hamming Encoder 

Decoding Hamming codes is best described in a pictorial 
circle diagram similar to a union and intersection circle 
diagram [5].  For a (7,4) Hamming code the circle diagram 
can be defined as shown in Figure 3. 

 
Figure 3 - (7,4) SECDED Hamming Diagram 
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A few decoding examples using the Hamming diagram 
follow; when there are no errors, one data bit error, one 
parity bit error, and more than one error. 

If no errors occurred during transmission between two 
points then no parity flags will exist.  If one data bit error at 
‘d2’ occurred during transmission then two parity errors will 
at ‘p1’ and ‘p2’.  Two parity flags occur if a single error 
occurs at ‘d1’ and ‘d3’.  All three parity errors will occur if 
‘d4’ is erroneous.  If one parity error is received only that 
one parity bit will flag and can be ignored.  In the case of 
multiple errors Hamming codes are not adequate and the 
overall parity check must be used to determine a double 
error condition [5].    

In general, Hamming codes become more efficient when the 
number of data wires is increased in one major way; channel 
efficiency η.  As the number of data bits for encoding 
increases the ratio of parity bits decreases as shown in 
Figure 4 given the equation [5] 

#   
#   

 

The Montana State University technology demonstration 
implemented a (31, 26) Hamming code on a Virtex-5 
evaluation board to provide the SECDED ability.  The 
combined Hamming and final parity bit provides a 32 bit 
parallel bus, or block, which encodes 26 data bits [4].   

 

 
Figure 4 - Hamming Code Channel Efficiency 

The demonstration was intended to emulate communication 
between instruction ROM and a Xilinx Pico-Blaze core.  An 
8 and 18 bit counter provides the address and instruction 

respectively, and the system diagram is shown in Figure 5.  
It is the intention that the Hamming encoding, FPGA 
routing fabric and Hamming decoding remain transparent to 
the ROM and Pico-Blaze.  Additional logic was added to 
switch from known bad wires to spare wires.  The state flow 
diagrams of the ROM and microcontroller designs, in 
Figure 6 and 7 respectively, display the basic switching 
method to avoid damaged wires [4]. 

The implementation results of the demonstration proved the 
(31,26) Hamming code was able to detect and recover from 
experimentally induced hard-faults.  With the addition of 
spare wires and switching logic the design was able to 
reroute to spare wire and continue operation without 
channel performance degradation [4]. 

The Hamming code system, being a parallel bus, has 
numerous disadvantages.  Although a larger Hamming code 
has higher channel efficiency, the total bandwidth of any 
parallel bus is limited due to inter-symbol interference, 
noise, and transmission line properties.  This parallel system 
does not have the ability to communicate over longer 
distances.  Compared to serialized technology, the parallel 
Hamming system will have less bandwidth.  Wire mass is 
high in this system, which may make it unsuitable for 
avionics and space applications. 

There are some advantages of the Hamming code system, 
without the added logic to switch to spare wires when 
damage is detected, is a simple way to detect and correct 
single bit errors and operate with one damaged wire.  With a 
moderate amount of complexity additional spare wire 
switching can be added, as demonstrated.  Hamming codes 
by their virtue are easy to encode and decode giving a low 
latency between two communication points. 
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Figure 5 – Hamming Reconfiguration System Diagram 
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Figure 6 – ROM Hamming Reconfiguration Switching 
State Diagram 
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Figure 7 – Microcontroller Hamming Reconfiguration 

Switching State Diagram 
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3. TRIPLE MODULAR REDUNDANCY 

TMR is a simple masking technique.  In a parallel bus 
system the data is replicated, or split, three times at the data 
source.  The sink, or receiver, votes on the three channels bit 
by bit and determines the correct data by majority rule.  In 
theory, up to one wire can be damaged per bit in TMR and 
still maintain data integrity.  The channel efficiency of TMR 
is low when compared to Hamming codes and is a constant 

1
3

 

The demonstration system involved two rapid prototyping 
FPGA boards.  One board serves as the constant data source 
or ROM for example.  The other serves as the data receiver 
or micro-controller.  A one byte up-count pattern is copied 
between three separate one-byte parallel buses in the ROM 
prototyping board and is connected to the receiving end.  
The data in the receiver, or micro-controller, determines 
errors by voting on the three inputs bit by bit.  An example 
of a one-bit TMR voter circuit is shown in Figure 8.  The 
resulting data is compared to the expected up-count pattern 
to verify proper operation.  The complete TMR system 
diagram is shown in Figure 9. 

 
Figure 8 – One-bit TMR Voter Circuit 

The TMR demonstration was successfully able to detect and 
recover from induced bit errors within the scope of TMR.  
There are major disadvantages to TMR.  As with the 
Hamming code example, a parallel bus system has a 
relatively slow data rate.  The low channel efficiency 
compounds the problem by adding in three times more wire 
mass per bit.  TMR does provide a very simple way to 
guarantee data communication between two points.  Given 
its low complexity, TMR provides a low latency 
technology. 

 

 
Figure 9 – TMR System Diagram 

4. ARQ PARALLEL PARITY EXAMPLE 

The last parallel bus method of detecting and correcting 
errors in communication between two points is using parity 
and ARQ.  In a simple ARQ system, the transmitter sends 
data to the receiver and then waits for an acknowledge flag 
before sending new data.  If an acknowledge flag is not 
received in a certain amount of time the transmitter resends 
the data.  The receiver can determine valid data by any error 
detecting code or redundancy check.  A simple even or odd 
parity can detect errors under certain conditions.  If there are 
an odd number of bit errors in transmission then parity can 
detect the error, an even number of errors cannot be 
detected.  Despite this limitation, parity is an extremely 
simple method of error detection that has little effect on the 
communication channel efficiency. 

This simple ARQ does not guard against a certain condition.  
If data wires are damaged then the receiver has high 
probability accepting data incorrectly based off the 
characteristics of parity.  In addition, if the acknowledge 
line is damaged then the transmitter will assume the receiver 
did not accept the data and continue to resend.  To guard 
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against these conditions, a method to discover damaged 
wires and reroute to spares needs investigation. 

To overcome the fore mentioned error conditions changes 
must be made to how the transmitter responds to 
acknowledgement timeouts.  If an acknowledgement is not 
received then the same data should be retransmitted at least 
once to determine if a SET occurred.  A sequence bit should 
be reserved, or added, to the bus to inform the receiver the 
data repeat was intended and not associated with a missed 
acknowledgment.  New data changes the sequence and a 
retransmit does not.  If another timeout is encountered then 
the transmitter must assume wire damage has occurred 
somewhere on the bus.  A logic high is asserted on the bus, 
all bits including spare wires, followed by a logic low by the 
transmitter.  This allows the receiver to determine which 
wires are damaged and reroutes to the next available spare.  
The receiver in turn sends back a logic high and logic low to 
allow the transmitter to identify the damaged wire and 
switch to a spare.  Once the wires have been rerouted then 
normal operation resumes.  The transmitter follows the state 
flow visualized in Figure 10 and the receiver in Figure 11. 

The channel efficiency of a parity driven ARQ with an 
additional sequence bit increases as the number of data bits 
increases (as shown in Figure 12), excluding spare wire 
from the calculation.  With spare wires included in the 
calculation the channel efficiency is defined as 

#  
#  3 #  

 

It should be noted since the transmitter must wait for an 
acknowledgement from the receiver the maximum possible 
data rate is half the total bandwidth of the bus.  Practically 
speaking the latency of receiving end will not be 
instantaneous; therefore the data rate will be much less than 
half the bandwidth. 
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Figure 10 - ARQ Parity Transmitter State Flow 
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Figure 11 - ARQ Parity Receiver State Flow 

The demonstration of this technology took place on FPGA 
development boards.  A one byte data field was selected for 
the sake of brevity and to directly compare to the TMR 
demonstration.  The design is scalable to the desired amount 
of data bits required.  The system implementation took the 
form as shown in Figure 13.  The results of the 
demonstration when subjected to single fault conditions at a 
time proved the ARQ system can detect, recover, and fix the 
parallel bus giving it immunity to SET’s and hard faults.  
Figure 14 illustrates the timing of transferring data under 
normal, SET, and hard fault conditions.  The required time 
to recover from an SET and hard fault decreases or 
increases with the timeout interval. 

 
Figure 12 – ARQ Parity Channel Efficiency 

 
Figure 13 - ARQ Parity System Diagram 
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Figure 14 - ARQ Parity Timing Diagram 

Despite the ability to detect, correct, and recover from errors 
the parallel ARQ parity example suffers from serious 
disadvantages.  The main disadvantage is the low data rate.  
The complexity of this method is also extreme when 
compared to other forms of error detection and correction.  
The bandwidth of this system is half the bus total bandwidth 
since an acknowledgement is required for each data transfer.  
The latency of this system is higher than the TMR and 
Hamming example.  In addition, latency increases given an 
error condition.   

There is one advantage to this method of communication.  
This system, in larger parallel bus systems, requires fewer 
wires than the Hamming code and TMR example.  If wire 
mass is a concern and a parallel bus is required per 
requirement or availability, then an ARQ system that uses 
parity is acceptable. 

5. ETHERNET 

The first serial technology application uses 10Base-T or 
100Base-T Ethernet, as the physical layer, to detect and 
correct communications errors. 10Mb/s and 100Mb/s 
Ethernet both use differential pairs as the electrical standard.  
Considering an 802.3 MAC frame, as shown in Figure 15, 
the preamble exists to allow the receiver to lock onto the bit 
clock and recover the remainder of the frame.  The 
destination and source address is the Media Access Control 
(MAC) address of the two end-points.  The frame type 
identifies the type of embedded protocol in the data frame, 
or the size of the data field transmitted.  The Frame Check 
Sequence (FCS) is capable of detecting multiple bit 
transmission errors.  The FCS is a 32-bit Cyclic 
Redundancy Check with a 

1 
polynomial.  The inter-frame gap is a length of time 
required between packets.  Considering a maximum length 
frame of 1538 bytes an Ethernet frame is very efficient.   

 
 38

 

1500
1500 38

97.5% 

A communication link with multiple Ethernet ports between 
the two points can be used to detect and recover from SET’s 
and hard faults such as wire damage.  The FCS embedded in 
the Ethernet frame is the method of detecting errors.  A 
command and response state flow can be used to respond to 
errors and switch away from damaged wires. 

When a data packet, ideally a maximum length packet, is 
transmitted the receiver checks the FCS and responds with a 
minimum length packet to inform the transmitter if the 
frame was received properly or not.  Since Ethernet is serial 
technology if a packet is received then the wire integrity is 
good.  The FCS check guards against SET’s.  If a bad 
packet is received a response is sent to request the same 
packet again; otherwise a new packet is requested. 
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Figure 15 - 802.3 MAC Ethernet Frame 

To account for the instance when the response line is 
damaged, both physical layers send the response packet.  If 
the transmitter does not receive a response packet from both 
Ethernet links then the receiver did not receive the packet 
and the current transmit line is damaged.  In this case the 
transmitter switches to the backup and resends the packet.  
If the transmitter receives a response packet on one or the 
other links then that corresponding response line is 
damaged.  The transmitter mitigates SET’s in the response 
packets since both links receive the identical packet.  If one 
FCS fails and the other does not then the valid packet is 
used.  However, if one link is already known bad and a FCS 
fails in a response packet, then the transmitter must request 
the response packet again.  Following the state flow 
diagrams in Figure 16 and 17, for the transmitter and 
receiver respectively, illustrates the process required to 
detect and switch from wire damage.  The theoretical 
efficiency of this error detection and recovery scheme 
would be 

 

      

     

   

   .  

   

Ideally with  and  zero the maximum efficiency of this 
system is 92.5% 

The system was implemented on an FPGA development 
board using Xilinx’s CORE generator to provide the base 
line dual Ethernet physical layer.  To provide a simple and 
quick demonstration a 10Mb/s link was selected.   The 

simple frame generator provided data to the Ethernet 
interface and was controlled by a Finite State Machine 
(FSM).  The FSM controlled the operation and response of 
the Ethernet physical layers as described in Figure 15 and 
16.  The system diagram is shown in Figure 18.  In the best 
observed situation the channel efficiency of this Ethernet 
system is 89.6%.  The timing diagrams, which show 
experimental results for normal, SET, and wire damage 
operation are illustrated in Figure 19, 20 and 21 
respectively. 

This dual Ethernet system offers many advantages over the 
parallel demonstrations.  This system offers a low wire mass 
solution that can still communicate over a long cable length.  
It is less complex than the ARQ parity example, yet more 
complex than the Hamming code and TMR demonstration.  
The sustained channel efficiency is higher in the Ethernet 
system compared to the parallel systems.  The only 
observed disadvantage to this scheme is higher data latency 
than the Hamming and TMR example, but less latency than 
the ARQ Parity example. 

Figure 16 - Ethernet Transmitter State-flow 
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Figure 17 - Ethernet Receiver State-flow 
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Figure 19 – Normal Operation Ethernet Timing Diagram 

 
Figure 20 – SET Operation Ethernet Timing Diagram 

 
Figure 21 – Damaged Transmit Wire Operation Ethernet Timing Diagram 
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6. CONCLUSION 

Non-masking and masking methods of error detection and 
correction have been overviewed and analyzed.  Masking 
techniques in general provide a low latency communication 
link since errors can be detected and corrected, within 
limits, at the receiving endpoint.  Masking methods by the 
same virtue of detecting and correcting errors can also 
detect and recover data from damaged wires.  The 
disadvantage of masking techniques is they take away from 
the total bandwidth of the applicable communication link.  
However, the bandwidth hit is negligible when compared to 
non-masking techniques. 

Non-masking methods are just a capable of detecting errors.  
However, in general they increase communication latency 
since they are not capable of correcting data without 
retransmitting the data.  To recover from hard faults, non-
masking systems must switch from damaged links to 
backups which increases the systems complexity and adding 
to the latency problems.  The bandwidth of non-masking 
techniques is severely affected since command and response 
methods state flow is required to verify proper reception of 
data. 

Regardless of non masking or masking techniques, wire 
mass concerns need to be addressed.  Parallel systems 
require massive amounts of mass when compared to serial 
technology.  The problem is compounded when spare wires 
are added to provide redundancy.   
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